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Our goal of SWNT studies
• How does a tubes electronic states 

respond to perturbations?

Electronic model

(n,m) assignments“Environmental” effects, 
perturbations

Optical excitation resonance (Eii):
e-h pair excitons vs 
band edge resonances

Heat, strain, doping, ε, 
interfaces, schmutz…

Identifiers like Eii not
fixed for given (n,m) tube
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Ensemble vs. single tube 
measurements

Ensembles:
• “Big picture”
• Statistically valid
• Inhomogeneous 

broadening
• Cannot follow how 

perturbation affects 
a tube

Single tube:
• Detailed information, 

e.g. lifetime, Eii(strain) 
• Harder to get 

statistics
• Harder measurements
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Ensemble measurements -Adding a variable…

Absorption, or Luminescence

In
te

ns
ity

Bachilo et al., Science 298, (2002)

PL→PLE

Bachilo et al., Science 298, (2002)

PL→PLE Raman→
Resonance Excitation Raman

Fantini, PRL 93 (2004)

1/dia

PLE → (E22, E11), only SC
Res Ex Raman → (Eii, diameter) SC+M
→ (n,m) identification, 
→ “Family    pattern”



Raman Spectroscopy

e,h

photon
phononlaserE ωh±

photon
laserE

phononωhm
phonon

Energy and momentum 
conservation → Probing of 
optical ZC phonons (mostly)

phononϖh−phononϖh+

Intensity

EShift

Phonon
Emission
StokesPhonon

Absorption
Anti-Stokes

Measures Raman Shift, i.e., 
quantized phonon energy: 

→Material identification
→Elastic properties and strain
→Temperature probe
→…

Spectrometer
(Eshift)
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Photo detector
(Intensity)

Sample
Notch 
Filter

Elaser

Resonant Raman spectroscopy
We will add Raman Intensity 
measurements to also probe the electronic 
structureElaser
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Role of Raman for CNTs

http://ultra.http://ultra.bubu..eduedu

Laser energy1D material:
• Normally week Raman signal 

strong due to resonance with 
vHS

→gives information about JDOS

CNT Raman modes:
• RBM-proportional to 1/D
• G-mode Tangential shear 

mode
• D- Defect mode near K point
• G’-mode: Doubly resonant 

mode near K-point

Dia (nm)

Tight Binding Kataura Plot

Note:  RBM=A/dia +B
A, B vary depending on environment
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What do we learn from single 
SWNT measurements?

REPs:
• Precise measurement of system 

resonance, Eii

• Resonance window
• Intermediate state lifetime broadening, 

~Γ
Area maps (micro-Raman)
• Physical extent of Raman active modes
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Experimental system
Samples
Results
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Nanotube people
• Yan Yin
• Andy Walsh
• Nick Vamivakas
• Wolfgang Bacsa
• Bennett Goldberg
• Selim Ünlü

• Steve Cronin,  Harvard
• Sasha Stolyarov, Harvard

http://ultra.bu.edu/photos/nvami.jpg
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Resonance Mapping Optical system

CCD

InGaAs Array
NIR

microscope

Flip mirrorsample f1

f2spectrometer

Excitation
f3 F1: laser block

F2: Vis block
F3: Laser BP

Limited range filter tunability by rotating F1 &F3 

Excitation: 
Individual lines 488, 514, 532,  and 633 nm
Tunable sources Dye laser 615-700 nm     1.77-2.02 eV 

Ti-Saph laser 700-850 nm 1.46-1.77 eV

Detection:  Si CCD Visible 1.25-3.1 eV
InGaAS 0.9-1.6um 0.78-1.38 eV
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Samples

• Quartz substrates (no PL) 
with etched trenches, 1-1.5 
um wide, ~0.3-0.5 um deep

• CVD grown tubes using 
methane gas at 900°C 
using a 1nm thick film of 
Fe deposited at RT

8 um

Optical image, 100x

AFM image

Trenches and markers make it 
possible to repeatedly return to 
the same tube

1um
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Finding tube w. Resonant Raman
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Laser: 770 nm
RBM=262 cm-1

1. Find the tube using RBM 
mode

2. Excitation map:Tune the 
laser energy and measure 
spectra (PL, Raman)

3. Spatial map of tube over 
trench

PL signal disappears quickly!
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Raman Intensity measurements, 
data handling
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Resonant Raman Excitation Maps
Stokes RBM 258 cm-1AS RBM -258 cm-1

Stokes Imax larger than AS Imax kT

S

AS eEI
I
I ωh−

⋅= )(

50 200 250 300

Raman shift (cm-1)

Stokes and AS Intensity maximum do not coincide
due to incoming and outgoing resonance
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Resonance Raman Intensity Profile; 
incoming and outgoing resonances

Raman intensity as a 
function of laser 
excitation energy
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Fitting Raman excitation profiles 
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•Broadening from intermediate states, added
•Even with g(E) asymmetric, the resulting  profile is 
symmetric.
→Asymmetry cannot be used to distinguish between 
single electron picture (asymmetric DOS) or exciton
(symmetric DOS)

DOS Band edge

Kramer Heisenberg time-dependent perturbation theory
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Resonance Intensity profile
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Good fit shows no heating 
takes place
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REP’s Broadening (23 tubes)
• Asymmetric 

broadening 
distribution

Possible that 
narrower REP’s are 
due to intrinsic 
broadening, while 
some tubes are 
inhomogeneoulsy
broadened 7 17 27 37 47 57
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Broadening distribution 
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Lifetimes
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Electronic Relaxation 
By Electron-Phonon 

Scattering
Calculate Probability per Unit Time of 
Transition by Fermi’s Golden Rule for 

Electronic Transition by Phonon Emission

Calculated transition rates ~0.02-0.1 ps 
(η~3-15 meV) 
But:
Fermi’s golden rule cannot be applied in our Raman 
case

PRB 71, 045417 2005 J. Jiang et al.
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Peak Assymetry (23 tubes)
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Within signal to noise, this distribution seems nearly symmetric
Possible cause of asymmetry : different broadening for incoming 
and outgoing resonances
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4 REP’s for one tube
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Note: For these 
measurements, 
IRBM > IG RBM:  E22= 1.545 3 meV η=28±8 meV

403:   E22= 1.548 4 meV η=18±10 meV
D:       E22= 1.552 3 meV η=11±4 meV
G:       E22= 1.549 5 meV η=18±6 meV
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Map of all 23 tubes
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SWNTs in SDS solution (PRL 93,147406) 
Individual SWNTs suspended in air 
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Partial composite Resonance Raman Map

• Note: Resonance below center (incoming 
and outgoing resonance)

22

25
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Resonant Raman Profile Summary
• Resonant window depends on tube radius

– Larger tube, smaller RBM, smaller window

• Resonance Profiles symmetric –but no discrimination 
between single electron-exciton models

• Single tube measurements of intrinsic linewidths (?)
• Both Eii and RBM have significant scatter for same (n,m) 

tubes -ensemble measurements inhomogeneously
broadened

• Tubes in air has different (lower) resonance energy than 
tubes in SDS
→ Exciton? Lower ε, higher Eb, lower energy
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Spatial Raman mapping of 
suspended tube

8 µmSignal is (at least) 5-10 times 
stronger over trench

1 µm
trench

Sample Q2a, CL6 - 40
RBM ≈ 256 cm-1

770 nm, 2mw

Elastic laser light map
(maps out trench) Raman map of RBM
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Variation in RBM frequency
(SiN substrate)
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Simultaneous PL and Raman from 
single nanotube
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Summary
• PL transient, Raman signal persisting
• Raman signal strongest across trench 

(Compare PL)
• Large changes in RBM across trench 

(SiN)
• Large Eii shifts compared to tubes in 

SDS
• Considerable variation in RBM, Eii for 

given (n,m) tube
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Extensive Raman Map: SDS 
Ensemble

SDS wrapped PL
SDS wrapped 

Raman
Bundles

Fantini, PRL 93 (2004)

This study, 
suspended tubes
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Electron Interactions
One Particle Effects:

Exchange interaction renormalizes 
single particle energy levels
Increases observed energy gaps

Two Particle Effects:
Exciton:  
Particle-Hole bound state
Decreases observed energy gaps

very large exciton binding energies predicted: 
~ 0.3-1 eV but are nearly canceled by bandgap 
renormalization C. Kane BU 2004
T. Ando, J. Phys. Soc. Japan (97)
C. Kane & Melee PRL 92 (2004)
C. D. Spataru,  et al,  PRL 92, (2004)

Eb~(2/(2-α))2 µEH
ε2me
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E-Shift due to change in exciton 
binding energy?

Eb
Exciton binding energy increases as 
dielectric constant decreases
→ Lowers the optical excitation energy

in SDS
α=1.4Suspended single tubes

(9,4)
(10,2)

(8,6)
(14,9)

(13,3)

C. D. Spataru,  Tersoff, Avouris  
PRL 92,  (2004) 
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